cis函數

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP







cis函數示意圖


body.skin-minerva .mw-parser-output div.mw-graphmax-width:100%;overflow:auto



一個可以代表cis函數的圖形,藍色是實數部、橘色是虛數部。






























cis函數
Cis function.png
性質
奇偶性 N/A
定義域 (-∞,∞)
到達域 |cis⁡x|=1,cis⁡x∈C=1,,operatorname cis xin mathbb C  left|operatornamecisxright| = 1 , ,operatornamecisx in mathbbC
周期
特定值
當x=0
1
當x=+∞ N/A
當x=-∞ N/A
最大值 複數無法比大小
最小值 複數無法比大小
其他性質
渐近线 N/A
N/A
臨界點
N/A
拐點
不動點
0
k是一個整數.

在初等解析學中,cis函數又稱純虛數指數函數,是複變函數的一种,和三角函數類似,其可以使用正弦函數和餘弦函數cis(x) := cos(x) + i sin(x)來定義,是一種實變數複數值函數英语Complex-valued function,其中i為虛數單位,而cis則為cos + i sin的縮寫。




目录





  • 1 概觀


  • 2 性質


  • 3 命名


  • 4 歐拉公式


  • 5 指數定義


  • 6 反函數


  • 7 恆等式

    • 7.1 半形公式


    • 7.2 倍角公式


    • 7.3 冪簡約公式



  • 8 相關函數

    • 8.1 餘cis函數


    • 8.2 雙曲cis函數


    • 8.3 cas函數



  • 9 參見


  • 10 參考文獻




概觀


cis符號最早由威廉·哈密頓在他於1866出版的《Elements of Quaternions》中使用[1],而Irving Stringham在1893出版的《Uniplanar Algebra》
[2][3]
以及James Harkness和Frank Morley在1898出版的《Theory of Analytic Functions》中皆沿用了此一符號
[3][4]
,其利用歐拉公式將三角函數與複平面的指數函數連結起來。


cis函數主要的功能為簡化某些數學表達式,透過cis函數可以使部分數學式能更簡便地表達[1][2][5],例如傅里葉變換和哈特利變換的結合[6][7][8],以及應用在教學上時,因某些因素(如課程安排或課綱需求)因故不能使用指數來表達數學式時,cis函數就能派上用場。



性質


cis函數的定义域是整个实数集,值域是單位複數,絕對值為1的複數。它是周期函数,其最小正周期为2πdisplaystyle 2pi 2pi 。其图像关于原点对称。


上述文字稱它以類似三角函數的形式來定義函數的原因是,就如同三角函數,他也算是一種比值,複數和其模的比值:



cis⁡θ=z|z|displaystyle operatorname cis theta =frac zoperatornamecis theta = fracz zright,其中zdisplaystyle zz是幅角為θdisplaystyle theta theta 的複數

因此,當一複數的模為1,其反函數就是幅角(arg函數)。


cisdisplaystyle operatorname cis displaystyle operatorname cis 函數可視為求單位複數的函數


cisdisplaystyle operatorname cis displaystyle operatorname cis 函數的實數部分和餘弦函數相同。




cis函數 定義在複數。圖中,顏色代表幅角,高代表模。



命名


由於cisdisplaystyle operatorname cis displaystyle operatorname cis 函數的值為「餘弦加上虛數單位倍的正弦」,取其英文縮寫cosine and imaginary unit sine,故以cisdisplaystyle operatorname cis displaystyle operatorname cis 來表示該函數。



歐拉公式



在數學上,為了簡化歐拉公式eix=cos⁡x+isin⁡x displaystyle e^ix=cos x+isin x e^ix = cos x + isin x ,因此將歐拉公式以類似三角函數的形式來定義函數,給出了cis函數的定義[9][6][5][10][11][7][8][12]


cis⁡θ=cos⁡θ+isin⁡θdisplaystyle operatorname cis theta =cos theta +i;sin theta operatornamecis theta = cos theta + i;sin theta

並且一般定義域為θ∈Rdisplaystyle theta in mathbb R ,theta in mathbbR,,值域為θ∈Cdisplaystyle theta in mathbb C ,theta in mathbbC,


θdisplaystyle theta theta 值為複數時,cisdisplaystyle operatorname cis displaystyle operatorname cis 函數仍然是有效的,所以有些人可利用cis函數將歐拉公式推廣到更複雜的版本。[13]



指數定義


跟其他三角函數類似,可以用e的指數來表示,依照歐拉公式給出:
cis⁡θ=eiθdisplaystyle operatorname cis theta =e^itheta operatornamecis theta = e^itheta



反函數


cisdisplaystyle operatorname cis displaystyle operatorname cis 的反函數: arccis⁡xdisplaystyle operatorname arccis xdisplaystyle operatorname arccis x,當代入模為1的複數時,所得的值是其輻角


類似其他三角函數,cisdisplaystyle operatorname cis displaystyle operatorname cis 的反函數也可以用自然對數來表示


arccisx=−iln⁡xdisplaystyle operatorname arccis ,x=-mathrm i ln x,operatornamearccis , x =-mathrmi ln x ,

當一複數經過符號函數後代入arccis⁡xdisplaystyle operatorname arccis xdisplaystyle operatorname arccis x可得輻角。



恆等式


cisdisplaystyle operatorname cis displaystyle operatorname cis 函數的倍角公式似乎比三角函數簡單許多



半形公式


cis⁡θ2=(1+i)+(1−i)cos⁡θsin⁡θdisplaystyle operatorname cis frac theta 2=frac (1+i)+(1-i)cos theta sin theta operatornamecis fractheta2 = frac(1+i) + (1-i)cos thetasin theta

cis⁡θ2=cis⁡θdisplaystyle operatorname cis frac theta 2=sqrt operatorname cis theta operatornamecis fractheta2 = sqrtoperatornamecis theta


倍角公式


cis⁡2θ=cis2⁡θdisplaystyle operatorname cis 2theta =operatorname cis ^2theta operatornamecis 2theta = operatornamecis^2 theta

cis⁡nθ=cisn⁡θdisplaystyle operatorname cis ntheta =operatorname cis ^ntheta operatornamecis ntheta = operatornamecis^n theta


冪簡約公式


cisn⁡θ=cis⁡nθdisplaystyle operatorname cis ^ntheta =operatorname cis ntheta operatornamecis^n theta = operatornamecis ntheta


相關函數



餘cis函數





cocis函數,正好跟cis上下顛倒,周期相同,但是位移了π2displaystyle frac pi 2fracpi2


就如同三角函數,我們可以令:cocis⁡θ=cos⁡(π2−θ)+isin⁡(π2−θ)=sin⁡θ+icos⁡θdisplaystyle operatorname cocis theta =cos left(frac pi 2-theta right)+i;sin left(frac pi 2-theta right)=sin theta +i;cos theta operatorname cocistheta =cos left(frac pi 2-theta right)+i;sin left(frac pi 2-theta right)=sin theta +i;cos theta ,其可用於誘導公式來化簡某些特定的cisdisplaystyle operatorname cis displaystyle operatorname cis 函數的式子。


至於指數定義,經過正弦和餘弦的指數定義得:


cocis⁡θ=(1−i)eiθ+(1+i)e−iθ2displaystyle operatorname cocis theta =frac (1-i)e^itheta +(1+i)e^-itheta 2operatornamecocis theta = frac(1-i)e^i theta +(1+i)e^-i theta 2

有恆等式:


cis⁡(−θ)=−icocis⁡θdisplaystyle operatorname cis (-theta )=-ioperatorname cocis theta operatornamecis (-theta) = -ioperatornamecocis theta

cis⁡(π2−θ)=cocis⁡θdisplaystyle operatorname cis left(frac pi 2-theta right)=operatorname cocis theta operatorname cisleft(frac pi 2-theta right)=operatorname cocistheta

cis⁡(π2+θ)=icis⁡θdisplaystyle operatorname cis left(frac pi 2+theta right)=ioperatorname cis theta operatorname cisleft(frac pi 2+theta right)=ioperatorname cistheta

cis⁡(π+θ)=−cis⁡θdisplaystyle operatorname cis (pi +theta )=-operatorname cis theta operatornamecis (pi+theta) = -operatornamecis theta

cocis⁡(−θ)=icis⁡θdisplaystyle operatorname cocis (-theta )=ioperatorname cis theta operatornamecocis (-theta) = ioperatornamecis theta

cocis⁡(π2−θ)=cis⁡θdisplaystyle operatorname cocis left(frac pi 2-theta right)=operatorname cis theta operatorname cocisleft(frac pi 2-theta right)=operatorname cistheta

cocis⁡(π2+θ)=−icocis⁡θdisplaystyle operatorname cocis left(frac pi 2+theta right)=-ioperatorname cocis theta operatorname cocisleft(frac pi 2+theta right)=-ioperatorname cocistheta

cocis⁡(π+θ)=−cocis⁡θdisplaystyle operatorname cocis (pi +theta )=-operatorname cocis theta operatornamecocis (pi+theta ) = -operatornamecocis theta



雙曲cis函數


一般會將雙曲cis函數定義成:


cish⁡θ=eθ=cosh⁡(θ)+sinh⁡(θ)displaystyle operatorname cish theta =e^theta =cosh(theta )+sinh(theta )operatornamecish theta = e^theta= cosh(theta) + sinh(theta)

定義域和值域皆為實數,但若定義雙曲複數,


考慮數z=x+jydisplaystyle z=x+jyz=x+jy,其中x,ydisplaystyle x,yx,y是實數,而量jdisplaystyle jj不是實數,但j2displaystyle j^2j^2是實數。



選取j2=−1displaystyle j^2=-1j^2=-1,得到一般複數。取+1displaystyle +1+1的話,便得到雙曲複數。


而雙曲複數有對應的歐拉公式:ejθ=cosh⁡(θ)+jsinh⁡(θ)displaystyle e^jtheta =cosh(theta )+jsinh(theta )e^j theta = cosh(theta) + j sinh(theta)


cish⁡θ=cosh⁡(θ)+jsinh⁡(θ)displaystyle operatorname cish theta =cosh(theta )+jsinh(theta )operatornamecish theta = cosh(theta) + j sinh(theta)

其中j為雙曲複數。


因此雙曲cis函數得到的值為雙曲複數,相反的若將其反函數帶入模為一的雙曲複數可得其輻角。


如此一來,值域將會變成四元數。



cas函數


cas函數是一個以類似cis函數的概念定義的一個函數,為雷夫·赫特利英语Ralph Hartley於1942提出,其定義為cas(x) := cos(x) + sin(x),是一種實變數實值函數,而cas為「cosine-and-sine」的縮寫,其表示了實數值的赫特利變換英语Hartley transform[14][15]


cas(x) = cos(x) + sin(x)

cas函數存在一些恆等式:


2cas⁡(a+b)=cas⁡(a)cas⁡(b)+cas⁡(−a)cas⁡(b)+cas⁡(a)cas⁡(−b)−cas⁡(−a)cas⁡(−b).displaystyle 2operatorname cas (a+b)=operatorname cas (a)operatorname cas (b)+operatorname cas (-a)operatorname cas (b)+operatorname cas (a)operatorname cas (-b)-operatorname cas (-a)operatorname cas (-b).,displaystyle 2operatorname cas (a+b)=operatorname cas (a)operatorname cas (b)+operatorname cas (-a)operatorname cas (b)+operatorname cas (a)operatorname cas (-b)-operatorname cas (-a)operatorname cas (-b).,

角和公式:


cas⁡(a+b)=cos⁡(a)cas⁡(b)+sin⁡(a)cas⁡(−b)=cos⁡(b)cas⁡(a)+sin⁡(b)cas⁡(−a)displaystyle operatorname cas (a+b)=cos(a)operatorname cas (b)+sin(a)operatorname cas (-b)=cos(b)operatorname cas (a)+sin(b)operatorname cas (-a),displaystyle operatorname cas (a+b)=cos(a)operatorname cas (b)+sin(a)operatorname cas (-b)=cos(b)operatorname cas (a)+sin(b)operatorname cas (-a),

微分:


cas′⁡(a)=ddacas⁡(a)=cos⁡(a)−sin⁡(a)=cas⁡(−a).displaystyle operatorname cas '(a)=frac mathrm d mathrm d aoperatorname cas (a)=cos(a)-sin(a)=operatorname cas (-a).displaystyle operatorname cas '(a)=frac mathrm d mathrm d aoperatorname cas (a)=cos(a)-sin(a)=operatorname cas (-a).


參見


  • 正弦

  • 餘弦

  • 複數 (數學)

  • 三角函数

  • 三角函数恆等式

  • 歐拉公式


參考文獻




  1. ^ 1.01.1 Hamilton, William Rowan. II. Fractional powers, General roots of unity. 写于Dublin. (编) Hamilton, William Edwin. Elements of Quaternions. University Press, Michael Henry Gill, Dublin (printer) 1. London, UK: Longmans, Green & Co. 1866-01-01: 250–257, 260, 262–263 [2016-01-17]. […] cos […] + i sin […] we shall occasionally abridge to the following: […] cis […]. As to the marks […], they are to be considered as chiefly available for the present exposition of the system, and as not often wanted, nor employed, in the subsequent practise thereof; and the same remark applies to the recent abrigdement cis, for cos + i sin […]  ([1], [2])


  2. ^ 2.02.1 Stringham, Irving. Uniplanar Algebra, being part 1 of a propædeutic to the higher mathematical analysis 1. C. A. Mordock & Co. (printer) 1. San Francisco, US: The Berkeley Press. 1893-07-01: 71–75, 77, 79–80, 82, 84–86, 89, 91–92, 94–95, 100–102, 116, 123, 128–129, 134–135 [1891] [2016-01-18]. As an abbreviation for cos θ + i sin θ it is convenient to use cis θ, which may be read: sector of θ. 


  3. ^ 3.03.1 Cajori, Florian. A History of Mathematical Notations 2 2 (3rd corrected printing of 1929 issue). Chicago, US: Open court publishing company. 1952: 133 [March 1929] [2016-01-18]. ISBN 978-1-60206-714-1. ISBN 1-60206-714-7. Stringham denoted cos β + i sin β by "cis β", a notation also used by Harkness and Morley.  (NB. ISBN and link for reprint of 2nd edition by Cosimo, Inc., New York, US, 2013.)


  4. ^ Harkness, James; Morley, Frank. Introduction to the Theory of Analytic Functions 1. London, UK: Macmillan and Company. 1898: 18, 22, 48, 52, 170 [2016-01-18]. ISBN 978-1-16407019-1. ISBN 1-16407019-3.  (NB. ISBN for reprint by Kessinger Publishing, 2010.)


  5. ^ 5.05.1 Swokowski, Earl; Cole, Jeffery. Precalculus: Functions and Graphs. Precalculus Series 12 (Cengage Learning). 2011 [2016-01-18]. ISBN 978-0-84006857-6. ISBN 0-84006857-3. 


  6. ^ 6.06.1 L.-Rundblad, Ekaterina; Maidan, Alexei; Novak, Peter; Labunets, Valeriy. Fast Color Wavelet-Haar-Hartley-Prometheus Transforms for Image Processing. 写于Prometheus Inc., Newport, USA. (编) Byrnes, Jim. Computational Noncommutative Algebra and Applications (PDF). NATO Science Series II: Mathematics, Physics and Chemistry (NAII) 136. Dordrecht, Netherlands: Springer Science + Business Media, Inc. 2004: 401-411 [2017-10-28]. ISBN 978-1-4020-1982-1. ISSN 1568-2609. doi:10.1007/1-4020-2307-3. (原始内容存档 (PDF)于2017-10-28). 


  7. ^ 7.07.1 Kammler, David W. A First Course in Fourier Analysis 2. Cambridge University Press. 2008-01-17 [2017-10-28]. ISBN 978-1-13946903-6. ISBN 1-13946903-7. 


  8. ^ 8.08.1 Lorenzo, Carl F.; Hartley, Tom T. The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science. John Wiley & Sons. 2016-11-14 [2017-10-28]. ISBN 978-1-11913942-3. ISBN 1-11913942-2. 


  9. ^ Weisstein, Eric W. Cis. MathWorld. Wolfram Research, Inc. 2015 [2000] [2016-01-09]. (原始内容存档于2016-01-27). 


  10. ^ Simmons, Bruce. Cis. Mathwords: Terms and Formulas from Algebra I to Calculus. Oregon City, OR, US: Clackamas Community College, Mathematics Department. 2014-07-28 [2004] [2016-01-15]. (原始内容存档于2016-01-19). 


  11. ^ Simmons, Bruce. Polar Form of a Complex Number. Mathwords: Terms and Formulas from Algebra I to Calculus. Oregon City, OR, US: Clackamas Community College, Mathematics Department. 2014-07-28 [2004] [2016-01-15]. (原始内容存档于2016-01-23). 


  12. ^ Pierce, Rod. Complex Number Multiplication. Maths Is Fun. 2016-01-04 [2000] [2016-01-15]. (原始内容存档于2016-01-15). 


  13. ^ Moskowitz, Martin A. A Course in Complex Analysis in One Variable. World Scientific Publishing Co. 2002: 7. ISBN 981-02-4780-X. 


  14. ^ Hartley, Ralph V. L. A More Symmetrical Fourier Analysis Applied to Transmission Problems. Proceedings of the IRE. March 1942, 30 (3): 144–150. doi:10.1109/JRPROC.1942.234333. 


  15. ^ Bracewell, Ronald N. The Fourier Transform and Its Applications 3. McGraw-Hill. June 1999 [1985, 1978, 1965]. ISBN 978-0-07303938-1. 



Popular posts from this blog

The Dalles, Oregon

“Thánh nhọ” Lee Kwang Soo chúc thi tốt, sĩ tử Việt Nam... có dám nhận hay không?

眉山市